3.76 \(\int (e x)^{-1+n} (b \sinh (c+d x^n))^p \, dx\)

Optimal. Leaf size=94 \[ \frac {x^{-n} (e x)^n \cosh \left (c+d x^n\right ) \left (b \sinh \left (c+d x^n\right )\right )^{p+1} \, _2F_1\left (\frac {1}{2},\frac {p+1}{2};\frac {p+3}{2};-\sinh ^2\left (d x^n+c\right )\right )}{b d e n (p+1) \sqrt {\cosh ^2\left (c+d x^n\right )}} \]

[Out]

(e*x)^n*cosh(c+d*x^n)*hypergeom([1/2, 1/2+1/2*p],[3/2+1/2*p],-sinh(c+d*x^n)^2)*(b*sinh(c+d*x^n))^(1+p)/b/d/e/n
/(1+p)/(x^n)/(cosh(c+d*x^n)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {5322, 5320, 2643} \[ \frac {x^{-n} (e x)^n \cosh \left (c+d x^n\right ) \left (b \sinh \left (c+d x^n\right )\right )^{p+1} \, _2F_1\left (\frac {1}{2},\frac {p+1}{2};\frac {p+3}{2};-\sinh ^2\left (d x^n+c\right )\right )}{b d e n (p+1) \sqrt {\cosh ^2\left (c+d x^n\right )}} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^(-1 + n)*(b*Sinh[c + d*x^n])^p,x]

[Out]

((e*x)^n*Cosh[c + d*x^n]*Hypergeometric2F1[1/2, (1 + p)/2, (3 + p)/2, -Sinh[c + d*x^n]^2]*(b*Sinh[c + d*x^n])^
(1 + p))/(b*d*e*n*(1 + p)*x^n*Sqrt[Cosh[c + d*x^n]^2])

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 5320

Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Sinh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Sim
plify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))

Rule 5322

Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[(e^IntPart[m]*(e*x
)^FracPart[m])/x^FracPart[m], Int[x^m*(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
&& IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int (e x)^{-1+n} \left (b \sinh \left (c+d x^n\right )\right )^p \, dx &=\frac {\left (x^{-n} (e x)^n\right ) \int x^{-1+n} \left (b \sinh \left (c+d x^n\right )\right )^p \, dx}{e}\\ &=\frac {\left (x^{-n} (e x)^n\right ) \operatorname {Subst}\left (\int (b \sinh (c+d x))^p \, dx,x,x^n\right )}{e n}\\ &=\frac {x^{-n} (e x)^n \cosh \left (c+d x^n\right ) \, _2F_1\left (\frac {1}{2},\frac {1+p}{2};\frac {3+p}{2};-\sinh ^2\left (c+d x^n\right )\right ) \left (b \sinh \left (c+d x^n\right )\right )^{1+p}}{b d e n (1+p) \sqrt {\cosh ^2\left (c+d x^n\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 93, normalized size = 0.99 \[ -\frac {x^{-n} (e x)^n \sinh \left (2 \left (c+d x^n\right )\right ) \left (-\sinh ^2\left (c+d x^n\right )\right )^{\frac {1}{2} (-p-1)} \left (b \sinh \left (c+d x^n\right )\right )^p \, _2F_1\left (\frac {1}{2},\frac {1-p}{2};\frac {3}{2};\cosh ^2\left (d x^n+c\right )\right )}{2 d e n} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^(-1 + n)*(b*Sinh[c + d*x^n])^p,x]

[Out]

-1/2*((e*x)^n*Hypergeometric2F1[1/2, (1 - p)/2, 3/2, Cosh[c + d*x^n]^2]*(b*Sinh[c + d*x^n])^p*(-Sinh[c + d*x^n
]^2)^((-1 - p)/2)*Sinh[2*(c + d*x^n)])/(d*e*n*x^n)

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\left (e x\right )^{n - 1} \left (b \sinh \left (d x^{n} + c\right )\right )^{p}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+n)*(b*sinh(c+d*x^n))^p,x, algorithm="fricas")

[Out]

integral((e*x)^(n - 1)*(b*sinh(d*x^n + c))^p, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e x\right )^{n - 1} \left (b \sinh \left (d x^{n} + c\right )\right )^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+n)*(b*sinh(c+d*x^n))^p,x, algorithm="giac")

[Out]

integrate((e*x)^(n - 1)*(b*sinh(d*x^n + c))^p, x)

________________________________________________________________________________________

maple [F]  time = 0.96, size = 0, normalized size = 0.00 \[ \int \left (e x \right )^{-1+n} \left (b \sinh \left (c +d \,x^{n}\right )\right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(-1+n)*(b*sinh(c+d*x^n))^p,x)

[Out]

int((e*x)^(-1+n)*(b*sinh(c+d*x^n))^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e x\right )^{n - 1} \left (b \sinh \left (d x^{n} + c\right )\right )^{p}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+n)*(b*sinh(c+d*x^n))^p,x, algorithm="maxima")

[Out]

integrate((e*x)^(n - 1)*(b*sinh(d*x^n + c))^p, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (b\,\mathrm {sinh}\left (c+d\,x^n\right )\right )}^p\,{\left (e\,x\right )}^{n-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sinh(c + d*x^n))^p*(e*x)^(n - 1),x)

[Out]

int((b*sinh(c + d*x^n))^p*(e*x)^(n - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (b \sinh {\left (c + d x^{n} \right )}\right )^{p} \left (e x\right )^{n - 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(-1+n)*(b*sinh(c+d*x**n))**p,x)

[Out]

Integral((b*sinh(c + d*x**n))**p*(e*x)**(n - 1), x)

________________________________________________________________________________________